

Das High-Speed-PLA-Filament ist eine der speziell entwickelten Hochgeschwindigkeits-Filamentlinien für den FDM-Druck. Während des Hochgeschwindigkeitsdrucks wird das Filament schnell in den Heizblock eingespeist und das Polymer hat nur sehr wenig Zeit, um vom festen in den geschmolzenen Zustand überzugehen, was zu einer Verstopfung der Düsen und einer schlechten Verbindungsqualität zwischen den Schichten führen kann. Durch die Optimierung des Molekulargewichts und die Einstellung der Fließfähigkeit ist das spezielle High-Speed-PLA-Filament in der Lage, ein schnelleres Aufschmelzen im Hot-End und eine viel schnellere Abkühlung nach der Extrusion des Materials zu erreichen. Als Ergebnis ist die Oberflächenqualität des mit dem High-Speed-Filamenten gedruckten Bauteils glatt und die meisten scharfen Details bleiben erhalten. Vor allem aber zeigt das High-Speed-PLA dank des optimierten Molekulargewichts eine hervorragende Qualität der Zwischenschichtverklebung und Festigkeit in Z-Richtung. Daher kann High-Speed-PLA für Konzeptmodelle und Figuren, Prototyping usw. verwendet werden.

Physikalische Eigenschaften

Property	Testing method	Typical value
Density	ISO 1183, GB/T 1033	1.21 (g/cm3 at 21.5 °C)
Heat Distortion Temperature	ISO 75, 0,45 MPa	53 (°C)
Melt Flow Index	190 °C, 2,16 Kg	4,5 (g/10 min)
Water absorbtion	ISO62: Method 1	0,4 (%)
Odor	/	Almost odorless
Solubility	/	Insoluble in water

Mechanische Eigenschaften

Property	Testing method	Typical value
Young's modulus (X-Y)	ISO 527, GB/T 1040	2600 ± 215 (MPa)
Tensile strength (X-Y)	ISO 527, GB/T 1040	59 ± 1 (MPa)
Elongation at break (X-Y)	ISO 527, GB/T 1040	15 ± 0,8 (%)
Bending modulus	ISO 178, GB/T 9341	2700 ± 154 (MPa)
Bending strength	ISO 178, GB/T 9341	81 ± 2 (MPa)
Impact strength	ISO 179, GB/T 1843	4,3 ± 1,3 (KJ/m2)

Version 1.0 November 2023