

High Speed ABS Filament ist eine der speziell entwickelten Hochgeschwindigkeits-Filamentlinien für den FDM-Druck. Beim Hochgeschwindigkeitsdruck wird das Filament schnell in den Heizblock eingeführt und das Polymer hat nur sehr wenig Zeit, um vom festen in den geschmolzenen Zustand überzugehen, was zum Verstopfen der Düsen und zu einer schlechten Qualität der Verbindung zwischen den Schichten führen kann. Außerdem kommt es bei ABS während des Hochgeschwindigkeitsdrucks ohne beheizte Kammer in der Regel zu ungünstigem Verzug und Delamination des gedruckten Teils.

Mit optimiertem Molekulargewicht und Steifigkeit ist das spezielle High-Speed-ABS-Filament in der Lage, während des Hochgeschwindigkeitsdrucks schneller zu schmelzen und abzukühlen, was zu einem geringeren Temperaturgradienten und einer geringeren inneren Spannung des gedruckten Teils führt. Mit nahezu null Verzug und verbesserter Zwischenschichtbindung ist High Speed ABS auch perfekt für viele funktionale Prototyping-Teile, Werkzeuge und Armaturen mit verschiedenen Nachbearbeitungsmöglichkeiten geeignet.

Physikalische Eigenschaften

Property	Testing method	Typical value
Density	ASTM D792 (ISO 1183, GB/T 1033)	1.08 (g/cm3 at 21.5 °C)
Heat Distortion Temperature	Custom method	73 (°C)
Melt Flow Index	ISO 1133 (220°C, 10 Kg)	55 (g/10 min)
Water absorbtion	ISO 62: Method 1	0,36 (%)
Odor	/	Almost odorless
Solubility	/	Insoluble in water

Mechanische Eigenschaften

Property	Testing method	Typical value
Young's modulus (X-Y)	ISO 527	1770 ± 165 (MPa)
Tensile strength (X-Y)	ISO 527	45 ± 9 (MPa)
Elongation at break (X-Y)	ISO 527	40 ± 3 (%)
Bending modulus	ISO 178	1950 ± 165 (MPa)
Bending strength	ISO 178	52 ± 7 (MPa)
Impact strength	ISO 180	7 ± 1 (KJ/m2)

Version 1.0 November 2023